Option pricing using TR-BDF2 time stepping method
نویسنده
چکیده
The Trapezoidal Rule with second order Backward Difference Formula (TR-BDF2) time stepping method was applied to the Black-Scholes PDE for option pricing. It is proved that TR-BDF2 time stepping method is unconditionally stable, and compared to the usual Crank-Nicolson time stepping method, the TR-BDF2 shows fewer oscillations when computing the derivatives of the solution, which are important hedging parameters.
منابع مشابه
Strongly stable multi-time stepping method with the option of controlling amplitude decay in responses
Recently, multi-time stepping methods have become very popular among scientist due to their high stability in problems with critical conditions. One important shortcoming of these methods backs to their high amount of uncontrolled amplitude decay. This study proposes a new multi-time stepping method in which the time step is split into two sub-steps. The first sub-step is solved using the well-...
متن کاملHigh-order ADI scheme for option pricing in stochastic volatility models
We propose a new high-order alternating direction implicit (ADI) finite difference scheme for the solution of initial-boundary value problems of convection-diffusion type with mixed derivatives and non-constant coefficients, as they arise from stochastic volatility models in option pricing. Our approach combines different high-order spatial discretisations with Hundsdorfer and Verwer’s ADI time...
متن کاملStiffness-tolerant Methods for Transient Analysis of Stiff Markov Chains
-Three methods for numerical transient analysis of Markov chains, the modified Jensen's method (Jensen's method with steady-state detection of the underlying DTMC and computation of Poisson probabilities using the method of Fox and Glynn [1]), a third-order L-stable implicit Runge-Kutta method, and a second-order L-stable method, TR-BDF2, are compared. These methods are evaluated on the basis o...
متن کاملNumerical Solutions for Fractional Black-Scholes Option Pricing Equation
In this article we have applied a numerical finite difference method to solve the Black-Scholes European and American option pricing both presented by fractional differential equations in time and asset.
متن کاملSolving financial differential equations using differentiation matrices
This paper illustrates the use of the differentiation matrix technique for solving differential equations in finance. The technique provides a compact and unified formulation for a variety of discretisation and time-stepping algorithms for solving problems in one and two dimensions. Using differentiation matrix models, we compare time-stepping algorithms for option pricing computations and pres...
متن کامل